Conditional mean and quantile dependence testing in high dimension
نویسندگان
چکیده
منابع مشابه
Conditional Mean and Quantile Dependence Testing in High Dimension
Motivated by applications in biological science, we propose a novel test to assess the conditional mean dependence of a response variable on a large number of covariates. Our procedure is built on the martingale difference divergence recently proposed in Shao and Zhang (2014), and it is able to detect certain type of departure from the null hypothesis of conditional mean independence without ma...
متن کاملTesting homogeneity of mean vectors under heteroscedasticity in high-dimension
This paper is concerned with the problem of testing the homogeneity of mean vectors. The testing problem is without assuming common covariance matrix. We proposed a testing statistic based on the variation matrix due to the hypothesis and the unbiased estimator of the covariance matrix. The limiting null and non-null distributions are derived as each sample size and the dimensionality go to inf...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملTesting Structural Change in Conditional Distributions via Quantile Regressions
We propose tests for structural change in conditional distributions via quantile regressions. To avoid misspecification on the conditioning relationship, we construct the tests based on the residuals from local polynomial quantile regressions. In particular, the tests are based upon the cumulative sums of generalized residuals from quantile regressions and have power against local alternatives ...
متن کاملTesting the Conditional Mean Function of Autoregressive Conditional Duration Models
In this paper, we suggest and evaluate specification tests to test the validity of the conditional mean function implied by Autoregressive Conditional Duration (ACD) models. We propose Lagrange multiplier tests against sign bias alternatives, various types of conditional moment tests and integrated conditional moment tests which are consistent against all possible alternatives. In a Monte-Carlo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2018
ISSN: 0090-5364
DOI: 10.1214/17-aos1548